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Abstract

Evolutionary theories of foraging hypothesize that foraging strategies evolve to maximize search efficiency. Many
studies have investigated the central trade-off between explore—exploit and how individual foragers manage it under
various conditions. For foragers in groups, this trade-off can be affected by the social environment, influencing the
evolution of individual search strategies. Previous work has shown that when learning socially, explorative search
strategies can optimize group search efficiency. However, social learning can cause discrepancies in strategies that
benefit the group versus an individual. We model the evolution of explorative and exploitative strategies using Lévy
exponents under different levels of social learning and investigate their effect on individual and group search effi-
ciencies. We show that reliance on social learning can lead to the evolution of mixed groups that are not optimally
efficient. Exploiters can have a selective advantage in scrounging findings by explorers, but too many exploiters can
diminish group efficiencies. However, greater opportunities for social learning can increase the benefits of explorative
strategies. Finally, we show that area-restricted search can help individuals balance exploration and exploitation, and
make groups more efficient. Our results demonstrate how exploration and exploitation must be balanced at both
individual and collective levels for efficient search.
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Collective Intelligence

Significance statement

Introduction

Collective search, where independent individuals share
information with each other to search for resources in a
physical landscape, or for solutions in a problem-space, is
common across biological and social contexts. Collective
searching can decrease search costs, efficiently exploit re-
sources, make search reliable, and enhance sensing of en-
vironmental information (Aplin et al., 2014; Berdahl et al.,
2013; Clark and Mangel, 1986; Harpaz and Schneidman,
2020; Krause et al., 2002; Lihoreau et al., 2016; Roeleke
et al., 2022). It may therefore benefit individual searchers
and their individual success to be part of a group (Giraldeau
and Caraco, 2018; Pitcher et al., 1982). However, com-
petition for limited resources can make information-sharing
costly (Ranta et al., 1993) and result in discrepancies be-
tween search behavior that is adaptive for the individual
versus the group (Leonard and Levin, 2022). In this study,
we investigate the evolution of individual search strategies
under the constraints and affordances of collective foraging,
how they affect collective search, and what factors may
facilitate the evolution of strategies that are beneficial for
individuals as well as groups.

To efficiently search, individual foragers must balance
exploration for new resources with exploitation of known
resources (Bartumeus et al., 2014, 2016; Garg and Kello,
2021; Hills et al., 2015; Kamil et al., 1987). Previous works
have shown that efficient searchers need to modify this
balance based on their environments (such as resource
density and availability (Bartumeus et al., 2014, 2016;
Charnov, 1976; Krebs et al., 1978)). This balance may
further change when the search occurs in a group where
individuals can interact and affect each other’s strategies.
For example, foragers may aggregate to collectively exploit
a found patch of resources, but too much aggregation may
increase competition between foragers (Krause et al., 2002)
and heighten the need to independently explore for new

Searching for resources or information is a central problem that organisms face. In many contexts, search occurs in
groups. How does searching or foraging in groups affect an individual’s search behavior? Is searching in groups
always better than searching alone, and what kind of groups lead to efficient collective search? In this paper, we
answer these questions through an agent-based model amd study how search strategies evolve in individuals in the
context of collective foraging. We show that the evolution of individual search strategies are shaped by
others’ strategies and result in mixed groups of explorers and exploiters. We find that such mixed groups are
not always efficient in searching for resources and they may not be equally beneficial to all members. We also show
that the strategies that adaptively switch between exploration and exploitation result in search behavior
that is efficient for both individuals and groups. Our results highlight the constraints and affordances of collective
foraging, how they shape individual search behavior, and the need for a balance between exploration and exploitation
at both individual and collective levels for efficient search.

patches. Previous studies from animal foraging have shown
that foraging behaviors in individuals, in terms of explo-
ration tendencies or boldness, can be affected by social
competition (Bergmiiller and Taborsky, 2010; Webster and
Ward, 2011). The degree to which foragers influence each
others’ search strategies can depend upon how they interact,
for example, through social learning.

Social learning, by which foragers can observe and
acquire information about resources using social cues, can
influence how beneficial an explorative (or exploitative)
strategy is. The advantages of a strategy under social
learning can further depend upon the properties of the
physical and social environment, such as resource density
and group size. Herein, we develop a minimalist evolu-
tionary model of collective foraging that combines inde-
pendent foraging with social learning to investigate how
individual-level search strategies can be shaped in response
to constraints imposed by social learning and the foraging
environment. We also investigate the effects of evolved
individual strategies on group-level search performance and
which strategies may maximize the benefits of collective
foraging. We aim to simulate basic interactions between
individual search and social learning that can hold general
implications for bio-social systems such as animal groups,
human teams (Alexander et al., 2015; Giannoccaro et al.,
2020; Toyokawa et al., 2014), and multi-robot swarms
(Lerman and Galstyan, 2002; Winfield, 2009) where indi-
vidual agents in an information-sharing group can differ in
their explore—exploit tendencies for independent search to
find resources or solutions.

Social learning can influence individual foraging deci-
sions to explore or exploit (Greene et al., 2016; Sokolowski
etal., 1997; Spiegel and Crofoot, 2016; Strandburg-Peshkin
et al., 2017). For example, if foragers can detect when and
where others find resources, foragers may forego costly,
independent exploration and instead prefer to engage in
social learning and head towards locations where others
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have found resources in the hopes of finding more nearby.
However, socially driven search strategies may also in-
crease competition for resources and cause foragers to adopt
more explorative strategies that help them distribute
themselves in ways that counteract a tendency to over-
aggregate and over-exploit found resource locations
(Beauchamp, 2005; Di Bitetti and Janson, 2001; Gillespie
and Chapman, 2001). The additional costs of collective
foraging may necessitate foragers to inform their search
decisions by the current state of the environment, for ex-
ample, through area-restricted search (ARS) (Hecker and
Moses, 2015; Hills et al.,, 2013; Kerster et al., 2016;
Pacheco-Cobos et al., 2019). The effects of social learning
may also interact with other search conditions such as group
size and group composition to modulate the level of social
information available. An increase in group size can amplify
social information (e.g., in bees (Detrain and Deneubourg,
2008)), especially in rich environments, and decrease
overall exploration.

However, reliance on social learning may lead indi-
viduals to adopt search strategies that are not adaptive at the
group level. In a previous study (Garg et al., 2022), we
showed that foraging groups could maximize their search
efficiency when individual foragers independently explore
the environment while selectively joining other foragers in
their discoveries. However, at the individual level, such
explorative strategies may not always be adaptive, espe-
cially if exploitative agents can decrease their search costs
in the presence of other explorative foragers. Previous
models on group foraging have shown that certain foraging
strategies like producer or scrounger can be frequency-
dependent, that is, a strategy’s pay-off depends upon the
frequency at which it is adopted (Afshar and Giraldeau,
2014; Barnard and Sibly, 1981; Vickery et al., 1991).
Theoretical and empirical works have shown that such
frequency-dependent dynamics can also prevent pop-
ulations from evolving to group-optimal equilibria (Nowak
and Sigmund, 2004; Rogers, 1988; Smith and Price, 1973;
Svensson and Connallon, 2019; Turner and Chao, 1999).

In the present study, we investigate how reliance on
social learning can shape the evolution of individual search
strategies along the exploration—exploitation continuum.
We also test the effects of these evolved strategies on
collective search efficiency, that is, group fitness. In addi-
tion, we study how individual-level search strategies can
evolve to be beneficial for the group and the individual. In
the previous model (Garg et al., 2022), all agents in a group
practiced the same search strategy and we calculated which
strategy maximized collective efficiency. Here, agents could
vary in their degree of exploration versus exploitation by
means of a parameter u that governs the probability of
relatively short versus long movements through the resource
landscape. Using an evolutionary algorithm, u parameter
values were selected based on their effects on individual

efficiency and in the context of different levels of social
learning. Social learning was governed by a group-level
parameter, o that determined how likely agents were to use
social information to find resources. The model does not
consider the extent to which social learning (&) evolves but
rather considers the downstream evolutionary consequences
of'a population that relies more or less on social information.
We would also like to note that our model studies selection
for efficient search at the individual level, instead of the
group. Our results show that reliance on social learning can
lead to frequency-dependent dynamics between exploration
and exploitation. Our results also show that group perfor-
mance declines when social learning promotes the evolution
of exploitative strategies. Finally, we show how informed
search strategies that effectively balance exploration and
exploitation can counteract the over-reliance on social
learning by improving the payoffs of explorative search.

Model overview

We developed an evolutionary model of collective foraging
under different conditions of resource density, group size,
and social learning that could constrain the evolution of
individual search strategies. In the model, agents are con-
specifics foraging for resources in patchy environments and
their fitness is based on search efficiency. Agents can search
for resources independently or they can learn about resource
locations discovered by other foragers. Each simulation of
the model was run until 30% of the available resources were
consumed, at which point all resources were cleared and
refreshed, and all agents were replaced by a new generation.
The new generation of agents was copied from the previous
generation in proportion to the fitness of each previous
agent. The new generation thereby inherited their parents’
search strategies, such that the persistence of a search
strategy depended on its efficiency given the search
conditions.

We characterize exploration by how extensive (or long-
range) an agent’s search is, which is correlated with their
probability of finding new resources and the time they spend
near an already discovered resource. To simulate different
levels of exploration, we adapted the Lévy walk model
(Viswanathan et al., 1999b) which can generate a range of
random search strategies along the exploration—exploitation
continuum. The model uses a power-law parameter  that
modulates the probability of relatively long versus short
search movements and thereby simulates observed features
of explorative and exploitative search behaviors (Mehlhorn
et al., 2015). For example, agents with 4 — 1 employ a
relatively large proportion of long, straight movement steps
that help to cover new ground and find new patches at a
faster rate than shorter steps that are more likely to double
back on themselves. Long movements can reduce excessive
overlap between agents, but they may also cause agents to
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exit a patch before fully exploiting its resources. The Lévy
walk model was chosen in part because a single parameter
controls the variation between highly exploitative and
highly explorative search strategies.

We also test a model of informed search, where foragers
can adaptively switch between exploration and exploitation
based on information about the distribution of resources in
their environments. To do so, we modified the model to
include ARS, which is a simple heuristic that triggers slower
and exploitative movements after encountering resources to
search for more nearby before reverting to more wide-
ranging explorative movements. ARS may increase the
individual payoffs of explorative strategies and thereby
counterbalance any social learning bias towards exploitative
scrounging behaviors.

Model details

Similar to the model of collective foraging from Garg et al.
(2022), the search space is an L x L grid with periodic
boundaries. Resources in each simulation were clumped
into 20 randomly distributed patches under all conditions,
and the total number of resources was varied to create either
sparse or dense resource patches, Nz = 1000 or Nz = 10,000
(see Supplementary Methods for more details and
Supplementary Figure S1 for an example of the resource
environment). Previous studies have shown that in envi-
ronments with dense patches (where resources are easily
available and present in higher numbers), foragers should
prolong their time in a patch, that is, be more exploitative.
However, this effect of the resource environment may in-
teract with the constraints posed by the social environment.
Resources in the model are destructive, that is, they are
removed from the environment after being found during
each simulation. We would like to note that while resources
in our model are destructive, they exist in clumped patches
which can be revisited until exhausted. Thus, the patches
simulate a form of non-destructive search (Viswanathan
et al., 1999a) where there are usually resources available in
the vicinity of the one found (Wosniack et al., 2017). To
ensure that such revisitable patch structures remain mostly
intact throughout the course of the simulation, we end each
generation when 30% of resources have been exhausted.
We tested the model under two different numbers of
agents, N, = 10 or Ny = 50. Group size (N,) varied the
potential amount of social information available, and
consequently the level of social interaction and competition
among agents. Each agent foraged based on the following
rules: On each time step, each agent consumes a resource
unit if one existed within a radius, » = d,,;,, or in other
words, if a resource is present at their current grid location.
Otherwise, the agent moves in search of additional re-
sources. Heading and distance (d) of each move are chosen
based on either the agent’s individual search strategy or the

location of a detected social cue, that is, where another agent
found one or resources on the current time step. Each agent
can detect all locations where resources are found by others
on each time step. Agents execute each move of distance, d,
in a series of steps of fixed size (d,,;, = 107%), that is, they
have a constant speed and thus, longer steps take more time
to execute and incur larger implicit costs.

To independently search, agents choose a random
heading and move a distance sampled from the following
probability distribution:

P(d) = Cd™* (1)

where d,,;, <d<L,d,,;,=10"" is the minimum distance that
an agent could move, L is normalized to the width of the
grid, and u is the power-law exponent, 1 <u <3. Cis a
normalization constant such that

l—p
(L)liﬂ - (dmin)lﬂ

C= @)

the Lévy exponent g modulates the individual search
strategy as a continuum between shorter, more exploitative
movements and longer, more explorative movements. There
were six different alleles, that is, possible values for u: [1.1,
1.5, 2.0, 2.5, 3.0, 3.5] and each agent i is characterized by
one of the exponent values. u — 1.1 represents an ex-
plorative strategy with longer steps, 4 — 3.5 results in an
exploitative strategy with shorter steps and frequent turns,
and u ~ 2 balances the probability of long versus short steps.
Later, we consider ARS as an informed individual search
strategy that can be added to parameterized Lévy walks.

An agent, A4;, continues detecting social cues and re-
sources at its current location at each time step while ex-
ecuting an independent search move (Lévy walk of total
distance d). If there is no cue or resource available, it
continues moving step by step (d,,;,) in the direction of its
previous heading until it finishes walking the distance, d. If
the agent encounters a resource at its location, it consumes it
and truncates its walk. If no social cue or resource is de-
tected after executing the total distance, d, it draws a new
heading direction and distance based on its Lévy exponent.

However, if any time step, it detects a social cue at a
given location where another agent 4; has found a resource,
then it truncates its current walk to pursue the social cue
with the following probability:

©)

where d; is the distance between agents 4; and 4; and « is
the social selectivity parameter that determines how se-
lective an agent is in pursuing social information as a
function of distance (Bhattacharya and Vicsek, 2014). The
agent continues detecting social cues at each time step while
pursuing social cues or independently searching. If it detects
a new social cue while following another cue, it pursues the

Ps = exp (fad,-j) ,
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new cue only if its distance is less than that of the currently
pursued cue. If more than one social cue is detected on a
given time step, the agent pursues the closest cue (with ties
chosen at random).

We simulated the model for three levels of social se-
lectivity (o« = 107>, 1072, 10°) that correspond with high,
intermediate, and no (or negligible) social learning, re-
spectively. With high social learning, agents are more likely
to pursue social cues irrespective of distance. With inter-
mediate social learning, agents are more selective in pur-
suing social information and are less likely to pursue distant
cues that incur greater movement costs. With no social
learning, agents are very unlikely to follow social cues and
instead forage using only their individual search strategy.

Agents consume resources at locations they encounter. If
multiple resources are present at a given location, agents
consume one unit of resource per time step, in the order of
their arrival at the location. Thus, fewer or no resources are
available for agents arriving relatively late to a given re-
source location. Agents truncate their movements (towards
a social cue or random location) if they encounter a re-
source. After consuming all the resources at a location, they
initiate a new move either towards a social cue or to in-
dependently search along a random distance and direction.

Area-restricted search

Individual search strategies based on the above model are
uninformed because steps are stochastic and unaffected by
information that could be gained while foraging. We added
ARS as an informed component of individual search
strategies that is triggered when resources are found (similar
to Hecker and Moses (2015); Reynolds (2009); Ross and
Winterhalder (2018)). Specifically, when an ARS agent
moves to a location with one or more resources, it searches
the vicinity before moving to its next location, where vi-
cinity was defined as all neighboring locations within a
radius of two grid cells, , = 2d,,,;,. This radius is a proxy for
intensive, local search upon encountering a resource that has
been observed in various natural foraging conditions. ARS
agents move to any of the neighboring locations where
resources are found to consume them. ARS is potentially
more efficient when resources are clustered and hence more
likely to be near each other.

Genetic algorithm

Each simulation began with a group of agents with uni-
formly distributed values of 1 and thus, groups represented
the six alleles in equal proportions. The other three pa-
rameters (Ng, N4, and o) were held constant for each given
simulation and varied systematically across simulations.
The evolutionary algorithm selects agents based on their
search efficiencies #, that represents the ratio of the benefit

accrued and the total cost expended. We computed # as the
total amount of resources consumed (benefit) per total
distance moved (cost). Each round of selection occurs after
30% of resources are consumed, and efficiencies are nor-
malized to assign each allele with a probability of repli-
cation proportional to efficiency.

Each new population inherits the Lévy walk exponent, x,
from the selected parents. In addition, we added a mutation
rate of 0.05 that defined the probability of randomizing x to
one of the six alleles for each agent on each selection round.
Resources, efficiencies, and agent locations are reset after
each selection round and the simulation continues anew.
Our genetic algorithm selects individual strategies based on
individual fitness and not based on mean group fitness. We
can expect the mean group fitness to increase over time with
the intuitive hill-climbing dynamics if the fitness values of
search strategies are independent of their frequencies.
However, if the success of a strategy is dependent upon its
relative frequency in the population, there is no guarantee
that the overall mean fitness of the population will increase
with time (Nowak and Sigmund, 2004; Svensson and
Connallon, 2019; Turner and Chao, 1999).

Evolutionary analyses

The results presented here are from 40 simulations, and each
simulation was run for 3000 generations. We measured the
evolved values of u and group search efficiencies for each
parameter combination and for both models (non-ARS and
ARS). The results presented below show both the mean
evolved u in populations and their distribution across
populations, mean search efficiencies (1), and the changes
in u and # over generations. Note that our model results in
stochastic evolutionary dynamics due to variability in
population sizes, resource environments, stochastic search
decisions, spatial interactions, and mutations. Such sto-
chasticity prevents the groups from evolving to fully stable
equilibria (Imhof et al., 2005).

To corroborate our findings, we also performed invasion
analyses with the model to test the likelihood of a strategy
(Umuzans) Invading a population of another strategy (i, esidens)
based on their relative payoffs (see Supplementary Methods
for more details). The likelihood can be shown by calcu-
lating an invasion index (7) for a given set of resident and
mutant strategies,

;/Iﬂmuumz

i(luresident’ lumutant) = (4)

Hoesident

If a strategy is stable, then another strategy cannot
outperform it, and 7 < 1. If a strategy is unstable, then a
mutant with a more efficient strategy can invade, and i > 1. If
two strategies 4; and u; can invade each other, the groups
may evolve to stable, mixed equilibria with strategies x; and
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| corresponds to an explorative search strategy, while 4 — 3.5 corresponds to exploitative search. These data represent group
compositions over the last 10 generations out of a total of 3000. Error bars show 95% confidence intervals.

u; coexisting. The results from invasion analyses were not
affected by parameters that might affect evolutionary
simulations like the number of generations, mutation rate,
and selection rules.

Results

Reliance on social learning leads to
frequency-dependent payoffs and mixed groups of
explorers and exploiters

Previous studies have shown that with little or no social
learning (i.e., solitary foraging), individual search strategies
that balance explorative and exploitative movements with
the Lévy exponent, 4 = 2, are optimal for individual and
group-level search efficiencies (Bartumeus et al., 2016;
Garg et al., 2022; Viswanathan et al., 2008). We similarly
found that without social information, the genetic algorithm
increased search efficiency by selecting individual search
strategies with u =~ 2 (Figure 1, [right column], Figure 4 [top-
left] and Supplementary Figure S2 [right]). In line with
existing literature (Bartumeus et al., 2014; Wosniack et al.,
2017), we found that resource density affected the optimal
balance between exploration and exploitation. Sparse
patches necessitated more exploration of the search space
and thus, tilted the balance more towards exploration rel-
ative to denser patches (see Figure 1 [right-most column]).

Social learning can further modify the optimal balance
between explore—exploit in individuals. Our previous model
(Garg et al., 2022) showed that, at the group-level, social
learning increased the efficiency of explorative search. The
model showed that explorative search not only increases the
rate of discovering new resources but also prevents excessive
crowding at patches that can be a side-effect of too much
reliance on social learning. However, in the current model,
we found that when agents could use social information (a <
10%) to find resources instead of exploring independently, it
was beneficial for them to adopt strategies that were more
exploitative than explorative. In other words, although the
explorative search is beneficial to a group that shares in-
formation, it does not confer a selective advantage to agents
when selection operates at the individual-level. Instead, we
found that agents evolved values of u that fluctuated between
explorative and exploitative strategies over generations, with
an exploitative bias (see Figure 1 [top-left]).

The fluctuation in distributions of individual search
strategies with social learning can be explained by cyclical
frequency-dependent dynamics. In the presence of a few
explorative searchers who are quick to find resources, ex-
ploitative strategies become advantageous because they can
scrounge off the explorers. But as exploitative strategies are
increasingly selected, the proportion of explorative strate-
gies drops and explorers become over-exploited. Without
many explorers left to discover new resources, exploitative
search becomes less efficient and the advantage swings back


https://journals.sagepub.com/doi/suppl/10.1177/26339137241228858

Garg et al.

to explorative strategies, and so on. This cyclical dynamic is
similar to negative frequency-dependent selection (Mottley
and Giraldeau, 2000) that can lead to a mixed evolutionary
stable strategy between explorers and exploiters: exploiters
are more efficient when their frequency is low in the
population and as a result, neither explorers nor exploiters
can completely invade a population. We can also see this
pattern in the invasion analyses (Supplementary Figure S4
[top-row]) where exploitative mutants could invade ex-
plorative populations, but exploitative populations could, in
turn, be invaded by explorers with ¢ = 1.5.

The level of exploration/exploitation that individuals
evolve to in a group, thus, depends upon the balance of
payoffs from spending time searching for new resource
patches versus from prolonging time within patches. Social
learning decreases the benefits of independently exploring
and instead benefits exploitative strategies that can effec-
tively scrounge others’ discoveries (more so with denser
patches). But this benefit only holds until there are enough
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explorers to find new patches, at which point, it shifts back
in favor of more exploration. We next ask how the payoffs
from explore—exploit alter in large groups, where the op-
portunities for social learning increase and the costs of
overall exploitation can exceed its benefits.

Greater opportunities for social learning in large
groups increase the benefits of explorative strategies

Large groups of social learners can amplify the amount of
social information produced and the opportunities to so-
cially learn. Such widespread social learning can increase
the group’s overall exploitation levels, which, in turn, can
suppress the discovery of new resources and increase
competition for the ones already found. We found that in
large groups (N, = 50), explorative search strategies were
more likely to be selected than exploitative ones (Figure 2(a)
[right] and Figure 1 [bottom panel]).

Ny :50
Nr
e 1000
e 10000
107 1072 10°
fixed value of a
Na:50
Ng
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- 10000
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Figure 2. (a) Mean estimates of the evolved values of Lévy exponents (u) for different levels of resource density (Ng), group size (Na),
and social learning (). (b) Corresponding mean estimates of the group search efficiencies (1) of the evolved groups. Dashed lines show
the maximum group efficiency value obtained in Garg et al. (2022) for given a and N,. These values were similar for the two resource
densities (NRg). The averages were taken over the last |0 generations out of a total of 3000, for every parameter combination. Error bars

indicate 95% confidence intervals.
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The presence of more agents in a group led to more
persistent social cues and caused the group to excessively
aggregate at patches. Such overcrowding resulted in a quick
depletion of patches while raising the level of competition
between agents. As a result, exploitative strategies could not
scrounge effectively and their payoffs decreased. Con-
versely, it was beneficial to adopt explorative strategies (u
— 1) that could not only quickly search the area extensively
for new patches but they could also exit patches before their
resources diminished. With low social selectivity (o =
107°), a high proportion of explorative agents quickly
covered the search space and coalesced at newly discovered
patches before quickly breaking apart after exploiting its
resources. On the other hand, exploitative agents, who could
not find new resources independently, would not also be
able to scrounge effectively because patches would be gone
by the time of their arrival. High levels of competition for
limited resources ensured that resources would not remain
in a patch for too long after its discovery. Therefore, ex-
plorative strategies (1 =~ 1.1) were less likely to be invaded
by exploitative strategies (¢ > 2.5) under high levels of
social learning (Figure 1, Supplementary Figure S5).

Furthermore, when the competition was highest in the
conditions with dense patches (Nz = 10, 000) and low social
selectivity (¢ = 107°), explorative strategies’ benefits in-
creased and groups evolved to be quite explorative
(Figure 1). This effect is in contrast to the effect for small
groups (see previous section), where dense patches meant
sufficient resources for all agents at the patch and lessened
the need for independent exploration.

Our results so far show that individual payoffs from how
explorative (or exploitative) a strategy is vary based on the
level of social learning. Individual foraging (i.e., no social
learning) favors strategies that balance explore—exploit.
Reliance on social learning makes groups overall more
exploitative, but in large groups with greater opportunities
to scrounge, explorative strategies are favorable to coun-
terbalance the high levels of overall exploitation. We next
test the effect of these evolved strategies on group-level
efficiencies.

Selection for exploitative strategies due to social
learning can make groups less efficient

Although our genetic algorithm was set up to select agents
with high search efficiencies, we found that in many cases,
group-level search efficiency actually decreased over
generations (Supplementary Figure S2 (left)). If many
agents in a group evolved to be exploitative, group-level
exploration dipped and groups performed substantially
below the optimal levels as derived from the previously
published model (Figure 2(b) [left]). Conversely, when
groups evolved to be explorative (in large groups, N, = 50),

groups maintained search for new resources and efficiencies
did not diminish. We found that higher proportions of
explorers corresponded with near-optimal search efficien-
cies (Figure 2(b) [right]).

In small groups (N, = 10), when agents used social
learning, the presence of explorative agents decreased
search costs faced by exploitative agents and made them
more efficient than their explorative counterparts. This
advantage allowed exploitative agents to invade the pop-
ulation, but the absence of explorers decreased their effi-
ciencies and resulted in less efficient groups. We found that
higher proportions of exploitative searchers at any time
corresponded with lower efficiencies. For example, in
Figures 3(a) and 4 (top row), the mean u of the group
(shown in blue) decreased and increased periodically, and
the decreases in u coincided with elevated search effi-
ciencies (shown in green). An increase in explorers made
exploiters more efficient searchers and resulted in more
efficient groups. Exploiters could then replace explorative
agents but at the expense of mean efficiencies. This effect
caused dips in mean efficiency to coincide with increases in
mean values of u. As a result of high levels of exploitation,
evolved groups were substantially less efficient than the
optimal search efficiencies predicted in Garg et al. (2022)
(shown with dashed lines in Figure 2(b)). This decrease in
group search efficiency was more pronounced with rich
resource patches (N = 10, 000), where exploitative strat-
egies that prolonged the time spent within a patch were more
advantageous than the strategies that left too early
(Figure 2(a)).

Taken together, our results suggest that explorative
agents are necessary for groups to be efficient. Explorative
strategies may not be beneficial for an individual if others
can easily exploit their discoveries without contributing new
discoveries to the group. However, these results are from
search strategies where agents have fixed behavioral re-
gimes which cause explorative agents to continue exploring
for new resources even after finding a resource rather than
exploiting it. We next test whether adaptive switching
between exploration and exploitation can increase
individual-level benefits of explorative strategies and re-
solve the discrepancy between what is optimal for an in-
dividual versus the collective.

Adaptive switching between exploration and
exploitation can balance individual and
group efficiencies

In the results discussed thus far, explorative searchers find
resource patches quickly but also are quick to exit the found
patches before fully exploiting them. Social learning can put
them at a disadvantage by allowing others to exploit their
discoveries. However, if explorers could adaptively exploit
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their own discoveries, they would be able to increase their
payoffs. To test this idea, we created agents who could use
local information to adaptively decide when to continue
exploiting a patch and when to exit it to explore for more
patches. This decision mimicked the widely observed ARS
strategy. ARS, thus, enabled explorative foragers to indi-
vidually exploit found resources by engaging in local search
when resources are found.

We found that with ARS groups evolved to be more
explorative. With ARS, explorative agents could adaptively
exploit a patch before exiting it, which meant that ex-
ploitative agents could not effectively scrounge discoveries
from their explorative counterparts. This effect caused the
mean u values to decrease below 2 (Figure 5(a)) with fewer
exploiters selected (Figure 6). In addition, fluctuations in u
were smaller with ARS than without it (Figure 4 [bottom
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row]) because explorative strategies had substantially
higher payoffs than exploitative ones.

In terms of group-level search efficiencies, we found that
the higher proportions of explorative agents allowed the
groups to maximize their search efficiencies (Figure 5(b))
close to the theoretical optimum (shown in dashed lines in
Figure 5(b)) as estimated from the model reported by Garg
et al. (2022) (for details, see Supplementary Results and
Supplementary Figure S7). Moreover, unlike the non-ARS
condition where social learning led to a decrease in search
efficiency over generations (Supplementary Figure S2),
foragers using ARS became more efficient (Supplementary
Figure S3).

However, the previously noted relationship between the
level of exploration and social learning continued to hold.
Overall levels of exploration decreased with social learning
but in large groups, agents became highly explorative. This
effect was strongest with dense patches, where groups were
more explorative than even in the case of no social learning
(o = 0). This effect occurs because ARS is more effective
with dense patches than sparser ones and, thus, it was
beneficial for agents to spread out and decrease competition
(D1 Bitetti and Janson, 2001).

Finally, ARS with 4 — 1 (long steps interspersed with
informed short steps) can resemble non-ARS Lévy search
with g = 2. The difference between the two lies in whether
information about the environment drives the decision to
switch between exploring and exploiting or whether the
switch occurs randomly. Results from invasion analyses
(Supplementary Figure S6) show that, on average and
across conditions, Lévy walks with x4 = 2 were least likely to
be invaded by exploiters or explorers. Taken together, our
results indicate that search strategies that balance explo-
ration and exploitation, whether by informed or random
decisions, can be evolutionary stable with social learning.

Discussion

Foraging in groups has many benefits and costs that can
affect an individual’s search strategies (Cvikel et al., 2015;
Krause et al., 2002; Ranta et al., 1993). Optimal search
models have mostly focused on solitary foraging, where a
forager has to balance explorative and exploitative modes
of search to discover and harvest resources. Our model of
general collective foraging shows that the evolution of
individual search strategies, in terms of exploration and
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exploitation, can depend upon social interactions among
foragers in groups. The model also shows that differences in
explorative tendencies in independent search can result in
frequency-dependent payoffs that may not always improve
group search efficiency. Instead, individual-level selection
can lead to discrepancies between individual and collective
search goals (Leonard and Levin, 2022) by favoring ex-
ploitative strategies that are less efficient in the long run. We
found that informed search strategies (here, ARS) that use
environmental information to guide search decisions can
restore and stabilize the balance between exploration and
exploitation at both individual and group levels. Such a
balance can improve both individual and collective search
efficiencies and result in the evolution of more optimal
search groups.

Previous studies have shown that random search strat-
egies that can balance search for close and distant resources
can be optimal for individual foragers (Bartumeus et al.,
2014; Bénichou et al., 2011; Garg and Kello, 2021). Our
results show that this balance may not always be optimal in
groups where information about found resource locations is
shared between foragers. Instead, we found that the optimal
strategy for a searcher depends upon what strategies others
adopt: if group-level exploration is high, then it can be
beneficial to be exploitative, and vice versa. However, if

groups become too exploitative, search can be inefficient for
both groups and individuals. We found that the presence of
social learning requires a concomitant increase in the role of
cognitive processing in individual search strategies to
maintain and enhance search efficiency. In other words, in
the face of competition, individuals need to adaptively
switch between exploration and exploitation. Our results
add to previous studies showing how the addition of simple
heuristics to random-walk models can greatly increase
search efficiencies when compared to purely random search
models (Hein and McKinley, 2012; Hills et al., 2013;
Reynolds, 2009; Ross and Winterhalder, 2018). Results also
suggest that minimizing the role of cognitive processing
will tend to underestimate the extent to which non-local
search is explorative. Indeed, random search models might
be especially insufficient to capture real-world behavior
under conditions of threat and competition (Mobbs et al.,
2018). Under such conditions that pose significant oppor-
tunity costs, foragers may not be able to afford random
search and may also evolve more complex strategies with
complex communication, memory, and environmental
sensing (Hecker and Moses, 2015).

Evidence for simple heuristics like ARS has been found
in humans and other animals (Dorfman et al., 2022;
Pacheco-Cobos et al., 2019; Wiesner et al., 2012). Our
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results suggest that ARS may confer an evolutionary ad-
vantage to social foragers by increasing their share of re-
sources. Furthermore, prior work suggests that ARS
patterns (i.e., short, exploitative bouts alternating with
longer excursions) can closely resemble Lévy patterns of u
~ 2 and be more efficient than strategies where the switch
between exploration and exploitation is random. Some
works have shown that Lévy patterns of ¢ =~ 2 can be optimal
in social contexts, too, over multiple aspects. They can help
balance cooperation and competition (de Jager et al., 2011)
and lead to superdiffusive collective motions in swarms
(Ariel et al., 2015). Santos et al. (2009) also showed that
Lévy patterns can help balance collective cohesiveness and
dispersion and optimize collective efficiency in groups with
leaders and followers. Given that our results show that on
average, u ~ 2 is the strategy that is least likely to be invaded
across all conditions (Supplementary Figure S6), our results
support the possibility that processes that can balance ex-
plorative bouts with exploitative efforts (Campeau et al.,
2022; Kolzsch et al., 2015; Sims et al., 2019) can be bet-
hedging strategies to stabilize equilibria in groups. Whether
search strategies with 4 =~ 2 emerge from environmental
factors or are a result of evolved Lévy processes, the level of
exploration or exploitation that they give rise to will be
subject to varying payoffs and selection. Our results
highlight basic relations between individual and collective
search that can be expected to occur in real biological and
social search dynamics.

In our previous paper (Garg et al., 2022), we showed that
collective search can be efficient if individual foragers are
highly explorative and quickly find new resources while
being selective in their social learning to exploit and col-
lectively exploit clusters of resources found. Herein we
showed social learning requires foragers to be more intel-
ligently exploitative to protect their efforts from scrounging.
Other studies on social foraging have shown that foragers
may use certain strategies to increase their finder’s share (Di
Bitetti and Janson, 2001; Vickery et al., 1991). For instance,
capuchin monkeys maintain large distances between each
other while searching for food, in order to harvest a suf-
ficient amount of food before others join in. Likewise, in our
model, explorative foragers with ARS were better at finding
resources and maintaining distances between each other.
This strategy may also be in line with predictions from the
ideal free distribution theory of animal foraging which
suggests that foragers in a group distribute themselves
across a resource landscape in ways that minimize com-
petition while maximizing energetic returns (Fretwell, 1969,
1972). Different social systems may employ other mech-
anisms to protect from scrounging and more generally
promote exploration, such as social prestige or synchro-
nized food-sharing in hunter-gatherers (Winterhalder,
1996). Multi-level selection, where foragers not only
compete with each other but also face group-level pressures

to cooperate, can also give rise to competitive groups that
maintain a high proportion of explorers for higher
efficiencies.

Our results show that the level of social learning prac-
ticed by the group can determine the search strategies of
individuals. Reliance on social learning increased the
benefits of exploitative search strategies but in larger
groups, greater opportunities for social learning favored
explorative strategies. Similar to our model’s predictions,
studies of bees have shown that the level of exploration
practiced by the bees increases with group size, due to
competition for limited resources (Griiter and Hayes, 2022).
However, our model assumes that the tendency or ability to
make foraging decisions based on social learning is inde-
pendent of the individual search strategy. These search
features may be correlated (Kurvers et al., 2010), in which
case, groups would benefit from a mix of asocial explorers
who find resource patches and social exploiters who harvest
a found patch. The movement or space-use patterns can also
affect how foragers acquire information (e.g., due to speed-
accuracy trade-offs) (Spiegel and Crofoot, 2016) or how
well they can communicate with each other (Roeleke et al.,
2022). Further investigations can modify the model’s as-
sumptions to test the effects of explorative strategies on
group-level efficiencies and general adaptability.

Individuals in many animal groups can consistently
differ from each other in their search strategies, especially in
terms of explorative behavior (Mehlhorn et al., 2015;
Reader, 2015), that in turn can affect group-level behaviors
related to foraging such as cohesiveness, flocking, and risk-
taking (Aplin et al., 2014; Burns and Dyer, 2008; Dyer et al.,
2009; Ioannou and Dall, 2016; Ward et al., 2004). Our work
adds to this discussion and shows instead how the differ-
ences between individuals in their explorative tendencies
may be affected by physical and social environment fea-
tures. We show that the differences in the movement speed
and patch discovery can lead to dynamics similar to the
classic producer-scrounger models (Barnard and Sibly,
1981; Caraco and Giraldea, 1991). Our results support
previous empirical work that has shown explorative and
exploitative foraging behavior to be density-dependent
(Greene et al., 2016; Sokolowski et al., 1997). Our
model also suggests that these differences may not always
be adaptive, and a high proportion of exploiters can de-
crease the mean fitness of a population. Although a mix of
explorers and exploiters in a group was not theoretically
optimum in our model, that may not always be the case in
the natural world. In some socially foraging species, where
individual fitness is tightly linked with that of the group,
explorative scouts do not optimize their finder’s share and
instead abandon food sources after discovering and re-
cruiting other workers (Grueter and Leadbeater, 2014;
Liang et al., 2012). In many natural conditions, explorative
strategies may have additional risks (such as predation, high
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search costs, or reduced attention to social cues) that could
decrease efficiencies in groups composed solely of ex-
plorers. For instance, in a variable environment, if the most
rewarding option is associated with high risk, then explorers
that continue searching for better options would be selected
against (Arbilly et al., 2011). Furthermore, maintaining a
mix of diverse search strategies may be especially helpful in
variable and uncertain resource environments (Dingemanse
et al., 2004).

Studies on optimal search strategies have largely focused
on the individual-level and how the physical environment
can shape the strategies. The present work shows that the
studies on optimal search strategies need to account for the
social environment, as well. We show that an individual’s
search behavior is constrained by both the physical and
social environment and can, in turn, shape the group and its
capabilities. Our model also highlights how the differences
between random and informed search strategies can lead to
important consequences on both individual- and collective-
level search efficiencies, especially under competitive
foraging. Future models on social foraging should account
for the role social information plays in shaping individual
preferences and search behavior and how social learning is
affected by independent search behavior. In this paper, we
used the explorative—exploitative movements to highlight
these trade-offs but social foraging models can easily be
extended to other aspects of search behavior such as optimal
departure time and optimal travel time that is formulated
within the Marginal Value Theorem framework (Davis
et al., 2022). For instance, decisions to explore or exploit
can be driven by the perceived value of resource patches that
can be modeled to take into account the costs and benefits of
both the physical and social context (Silston et al., 2021).
There may also be additional trade-offs posed by being in a
group, such as maintaining group cohesiveness, and leader-
follower dynamics, that affect these decisions (Santos et al.,
2000).

The implications of our results are not limited to foraging
for resources but extend to collective problem-solving and
action, where independent searchers use social information
to find solutions to a problem. Studies on collective
problem-solving and search can benefit from investigating
how individual search behavior within a group might be
influenced by the strategies adopted by others. For instance,
if some group members are risk-prone and explorative, then
others might prefer searching for less-riskier solutions,
minimizing their search costs, and prefer to improve upon
solutions found by others. Or, being a part of a group may
dilute risk and embolden group members to explore novel
and risky solutions to a problem (Camison-Zornoza et al.,
2004). There may be additional incentives for the explo-
ration of novel solutions or ideas, for example, patents,
social prestige, and other rewards associated with innova-
tions (Giraldeau et al., 2017). Our results also suggest that

studies on collective behavior should consider the dis-
crepancies between individual and collective goals, costs,
and benefits (Leonard and Levin, 2022). Further, investi-
gating how social learning and communication evolve in
tandem with individual search strategies under different
contexts can shed light on general aspects of collective
behavior and sociality.
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